

Implementing Climate Action Plans (CAPs), Modernizing Infrastructure

November 3, 2023

Restricted | © Siemens 2022 | Siemens US

 By: Jon Zeller

 Market Lead - Government & Higher Education

 Siemens Smart Infrastructure

 Business to Society Programs

 Visit Our EAAS PLATFORM: CALIBRANT ENERGY

Overview – Energy Savings Based Solutions

Cost Effectively Modernizing Infrastructure

Traditional Approaches, Industry Trends, **New Federal Funding Opportunity**

Energy Savings Based Solutions

Flexible Vehicle, Demonstrated History of Proven Results

Utilizing the Value of Energy Savings Generated within Operating Budgets to Fund Project Development, Implementation, & Post-Construction Services

Note: This is an illustration only. The percent of savings varies from project to project

PA Guaranteed Energy Savings Act (GESA) Programs

62 Pa. C.S. §§ 3751-3758, as Amended Basis Towards Realizing CAP Objectives

Flexible Vehicle, Demonstrated History Delivering Proven Results

SIEMENS

PA Guaranteed Energy Savings Act (GESA) Programs

Flexible Contracting Vehicle, Demonstrated History of Proven Results

Legal

- PA Legislation Enacted in 1998 (62 Pa. C.S. § 3751-3758, as amended)
- Leveraged by Hundreds of PA Institutions
- Finance Guaranteed Cost Savings Over 20 Year Repayment Term
- Savings Guaranteed by Qualified Energy Services Company (ESCO)
- Not Subject to "Low-Bid" Scope Selections
- Flexibility to Incorporate Public-Private Partnership (P3) Type Contract Structures (EaaS, PPA, DBOOM, MSA) as needed
- Public Request for Proposal (RFP) on ESCO Qualifications

Financial

- No Capital Dollar Outlay Required (Excluding Energy-Related Cost Savings)
- Projects Financially Supported by Savings Generated
- Consolidates Development, Construction, & Post-Construction Service Costs
- Does Not Impact Operating or Capital Budgets
- Investment Tax Credits (ITCs), Energy Rebates, Grants, and Incentive Programs
- Option to Include Capital \$ Contributions to Address Larger CAP Capital Planning Objectives
- P3 Type Structure Options

Technical

- · New Technologies Installed
- Modernized Infrastructure
- Comprehensive Project Scopes
- Iterative, Phased Scope Development Process
- No Cost / No Obligation Preliminary Energy Analysis to Determine Potential
- Streamlined Implementation of Critical Projects
- · ESCO Partner Serves as "GC"
- No Change Orders
- Measurable Energy Savings and Offsets to Optimize Operational Sustainability
- Enhanced Sustainability, Resiliency
- Documented GhG Reductions

SIEMENS Ingenuity for life

- Funds New Infrastructure
- Addresses Deferred Maintenance Issues
- Creates Jobs
- Positive Impact to Local Economy
- Applies 25+ Years Industry "Best Practices & Process
- Documents & Tracks Results Over Performance Term
- Realizes CAP
 Objectives in Short-Term

PA Guaranteed Energy Savings Act (GESA) Programs

Flexible Contracting Vehicle, Demonstrated History of Proven Results

Energy	New, Efficient Lighting and Lighting Control Systems (Internal, External, Street)				
Conservation Measures (ECMs)	Energy Management Control Systems, Digitization, Integrations, Retro-Commissioning				
	New Boiler Plant Upgrades, Replacements				
Facility Improvement Measures (FIMs)	New Cooling System, Chiller Upgrades				
	New Energy Efficient HVAC Equipment and Systems				
	Weatherization ImprovementsNew Roofs, Windows, Infiltration Reductions				
Deferred Maintenance Projects	Water Conservation, Wastewater Infrastructure Rehabilitation				
	Renewable Energy Technologies Solar PV, BESS, Hybrid, Geothermal, Wind, Etc.				
	Optimized Utility Service Contract Arrangements				
Energy Related Cost Savings Projects	Demand Response Revenues (\$)				
	EV Infrastructure				
	Other customized solutions needed by the Municipality				

PA DGS GESA Program Projects Through August 2022

Example – Borough of Forest Hills, PA

7) 2023 - In Construction Utilizing PA GESA to Implement Climate Action Plan (CAP)

- Climate Action Plan Adopted Dec. 16, 2020
- Preliminary Energy Audit Oct 8, 2021
- Public Procurement GESA RFP/Q
 - Feb 14, 2022 Issued:
 - Selected: March 23, 2022
- Development/Investment Grade Audit (IGA) June 20, 2023
- GESA Contract: May 4, 2023

Comprehensive GESA Scope

Efficiency, Capital Renovation, Deferred Maintenance, CAP Projects

- Lighting Upgrades
- Lighting Controls
- Envelope Improvements
- **HE Pool Heater Replacement**
- Air to Air Heat Pump 2nd Floor н.
- Site Controls / Integration,
- **Roof Replacement**
- Solar PV & Solar PV Canopy

- Functional Survey
- Refrigerant Catalyst
- HE Unit Heater Replacement
- Heat Pump Replacement
- Fire Office HP Replacement
- Refrigerant Catalyst RTU #1
- Virtual Net Metering
- **Renovation RTU#1**

FOREST HILLS Ingenuity for life Pittsburgh Wilkinishum Mt Oliver Homestead Braddock Munhail

2020 CAP Objective

Achieve Net Zero Carbon

Emissions by 2050

Forest Hills Net Zero Borough Building (2017) 175kW Solar PV & Geothermal 150 Tons Annual CO2 Emission Reductions

SIEMENS

2024 GESA Realized 89% 100% CO2Emission Virtually Net Reductions Operations.

Metered

PA Guaranteed Energy Savings Act (GESA) Programs Flexible Contracting Vehicle, Demonstrated History of Proven Results

Tracking Emission Reductions, Savings, Local Impacts

Resulting Greenhouse Gas (GhG) Emission Reductions Projected Annual Avoided Emission (CO ²) Production									
Utility & Reductions	Annual GhG Emission	Pounds of Coal	Gallons of Gasoline	Barrels of Oil					
Over Time	Reductions (Lbs.)	Not Burned	Not Consumed	Not Consumed					
套	2								
Electric	405,270	256 707	25 797	530					
Natural Gas	99,966	200,101	23,101	000					
Totals (Annual):	505,236	256,707	25,787	530					
Totals (20 Years):	10,104,720	5,134,140	515,740	10,600					

Energy Public-Private Partnership (P3) Structures

GESA Related Realizing CAP, Capital Improvement & Deferred Maintenance Implementation

Modernizing Energy Infrastructure, Enhancing Financials, Mitigating Risk & Long-Term Liabilities

SIEMENS

Energy Public-Private Partnership (P3) Structures

Trends & Drivers – Industry Overview

- Alternate Means to Fund Capital Upgrades
 - No Capital Outlay Needed
 - Averts Need to Raise Taxes
 - Address Mounting Deferred Maintenance Projects
 - Modernization, Efficiency, Sustainability, Resiliency, Workforce/Education Objectives
- Integrates Project Development, Construction & Post-Construction Services
- Determines Feasibility (Technical & Financial) of Various Technologies and Upgrades
- Major Differences Scope/Technologies, Finance (Source & Structure) and Term

Energy Public-Private Partnerships (P3)

GESA Related Structures, Optimizing CAP Financials, Long-Term Performance Pathway to Decarbonization, Electrification, Sustainability

P3 Provider:

- Funds Projects that Modernize Thermal & Energy Systems...Not the Municipality
 - Mitigates Impact that Capital Projects have on the Municipality's Credit Ratings & Worthiness
- Transaction Modeled to be Credit Neutral Positive
 - Utilizing Concession Type Agreements
- Captures Tax Benefits (30-40%+) & New Grant Funding on Clean Energy Investments
- Payments Typically Modeled as a Utility Bill
 - Impacts Municipality's Financials Similarly to Other Utility Costs...Electric, Gas, Water, Etc...

Unrestricted $\ensuremath{\textcircled{O}}$ Siemens Industry, Inc. Smart Infrastructure 2021

PA Municipality:

- New, Cleaner, Energy Infrastructure
 - More Sustainable Operation Over Long-Term
- Commits to be Primary Off-Taker of Utilities
- No CapEx Expenditure Conserving Capital Funds
 - Municipality Debt Service Capacity Preserved
- Guaranteed Savings Used to Offset Payments to P3 Provider
- Traditional Performance Liability & Operational Risk Eliminated

Determining Savings Potential, Recommendation Next Steps

Procurement, Project Development, Contracting, Construction

Recommended Structure

Optimizing CAP Financials, Long-Term Performance Pathway to Decarbonization, Electrification, and Long-Term Sustainability

Unrestricted © Siemens Industry, Inc. Smart Infrastructure 2021

Smart Infrastructure

Next Steps – Feasibility & Evaluation Step 1 – Assess Potential

Step 1 – Conduct "Preliminary Assessment"

- Data Collection, Survey
 - Utility Histories, Operational Data, All Facilities
- Pilot Project A Selection of Facilities
- Identify Goals with Stakeholders:
 - Technical
 - Financial
 - Workforce Development /Academic
- Identify Range of Contract Options
 - GESA
 DBOOM
 - EaaS
 Monetization
 - PPA
 Combination

Unrestricted © Siemens Industry, Inc. Smart Infrastructure 2021

Select CAP Implementation Partner

Next Steps – GESA RFPQ Procurement

Detailed Studies, Scope Development, Contract, Build

Select GESA/CAP Implementation Partner

Define Objectives, Priorities for Borough– Modernization, Sustainability, Carbon Reduction, Resiliency, Asset Monetization, Revenue Creation, Liability Mitigation, STEM Workforce, Etc...

Finance Options & Contract Structures – Discuss "Best Fit" Application

• Define Contract Term (20, 30, 40+ Years), On/Off Balance Sheet

Conduct Detailed Utility & Financial Analysis – 36-Months Preferred

- Utility Bills Electricity, Natural Gas, Fuel Oil, Propane, Water, Sewer, Etc...
- Drawings (All Facilities)
- Square Footages/Bldg, General Floor Plans
- Mechanical, Electrical, Plumbing (MEP) and HVAC Systems

Borough / Campus-Wide Site Surveys

Develop Scope Concept along with Potential Funding Options

Contracting **Project** Financing, Design, Construction, Operations

• Development Costs Rolled-Forward into Final ESA/Contract or billed upon last end-of-service

Thank You Questions?

Jon Zeller Market Lead – Higher Education Energy & Sustainability Business to Society Programs

Siemens Industry, Inc. Smart Infrastructure Mobile: (484) 743-7322 Jonathan.zeller@siemens.com Siemens Smart Infrastructure Visit Our EaaS Platform: Calibrant Energ

Princeton Island Grid

A living lab to drive innovation and sustainability

Virtual Tour

Components

- Siemens Building Management System DESIGO CC
- Siemens Microgrid Controller (MGC)
- Siemens Battery Storage System: 1MWh/500kW
- Photovoltaic System: 836 kWp
- Siemens VersiCharger for electric vehicles: 6x7.2kW

Research Focus

Cyber

Security

SIEMENS

Optimal Internet of Microgrid and Things Building Operation

Performance Simulation Monitoring and Digital and Twins Analytics

Blue Lake Rancheria, Campus, USA

Microgrid

Renewable Generation Sources:

- 175 kW Fuel cell + biomass
- 500 kW Solar PV & 500 kW/1000 kWh Battery

\$ 200K energy savings per year 0.00

zero net energy in island mode 200 t

CO₂ savings per year

Solution

- Spectrum PowerrTM Microgrid Management System
- 700 kW Load includes Casino, Hotel, Tribal Offices
- 1 MW Diesel generator for base generation
- Economic dispatch of solar/battery system
- Siemens PTI Electrical System Stability and Grid Impact Study

"When public safety power shutoffs left the surrounding community in darkness, Blue Lake Rancheria's systems were up and running."

"When you control your energy, you control your future."

Jana Ganion – Sustainability and Government Affairs Director, Blue Lake Rancheria

Javits Center

Video Case Study

Responsible Partner: Calibrant Energy

Vertical: C&I

Location: NY

Technology: Solar

Project Scope: 1.62 megawatts of solar, 3.5 megawatts of battery storage

Calibrant Energy will help New York City's largest rooftop solar generation project to date will offset the building's electric load and directly support current agenda for 100 percent carbon-free electricity in New York by 2040 and a ramp up for 70 percent of electricity to come from renewable energy by 2030.

- 1.62 megawatts of solar, 3.5 megawatts of battery storage and advanced controls: an addition that will allow excess generation from Manhattan's largest rooftop solar array to be stored for use during times of peak power demand, reducing energy costs and helping New York meet its aggressive solar and energy storage targets.
- More than 4,000 solar panels will be constructed over the HVAC units on the Javits Center's green roof so as not to impact plants on the building's rooftop.
- The roof is also a wildlife sanctuary for 26 bird species, five bat species and thousands of honeybees, according to the Javits Center. The
 planned rooftop solar panels will be built on top of existing HVAC units, to avoid disturbing the roof's greenery
- The project is estimated to offset more than 1.3 million pounds of carbon emissions each year, which is equivalent to removing 262 cars from the road.

PA Guaranteed Energy Savings Act (GESA) Programs

Flexible Contracting Vehicle, Demonstrated History of Proven Results

Example: GESA & Energy	Year	Energy Savings	Operational Savings	Gross Savings	Principal & Interest	Ongoing Support	Program Costs	Annual Contribution	Annual Net Cashflow	Cumulative Net Cashflow
Savings Program Modeling	Constr	\$32,964	\$0	\$32,964	\$0	\$0	\$0	\$0	\$32,964	\$32,964
	1	\$99,890	\$15,029	\$114,918	\$331,285	\$21,527	\$352,812	\$237,894		\$32,964
	2	\$101,388	\$15,254	\$116,642	\$331,285	\$22,173	\$353,458	\$236,816		
	3	\$102,909	\$15,483	\$118,392	\$331,285	\$22,838	\$354,123	\$235,732	<i>"Energy</i>	Related
	4	\$104,452	\$15,715	\$120,168	\$331,285	\$23,523	\$354,809	\$234,641	 Costs Savings" Capital \$ Contribution A cost saving resulting from the implementation of an ECM. Avoided current or planned capital expense. 	
	5	\$106,019	\$15,951	\$121,970	\$331,285	\$24,229	\$355,514	\$233,544		
	6	\$107,609	\$16,190	\$123,800	\$331,285	\$24,956	\$356,241	\$232,441		
	7	\$109,224	\$16,433	\$125,657	\$331,285	\$25,704	\$356,990	\$231,333		
Available	8	\$110,862	\$16,680	\$127,542	\$331,285	\$26,476	\$357,761	\$230,219		
Rebate & Grant Funding <i>(Fed,</i> <i>State, Utility)</i>	9	\$112,525	\$16,930	\$129,455	\$331,285	\$27,270	\$358,555	\$229,100		
	10	\$114,213	\$17,184	\$131,397	\$331,285	\$28,088	\$359,373	\$227,977		
	11	\$115,926	\$714	\$116,640	\$331,285	\$28,931	\$360,216	\$243,576		
	12	\$117,665	\$724	\$118,389	\$331,285	\$29,799	\$361,084	\$242,695	Avoided renovation,	
	13	\$119,430	\$736	\$120,166	\$331,285	\$30,692	\$361,978	\$241,812	renewal or repair costs	
	14	\$121,221	\$746	\$121,968	\$331,285	\$31,613	\$362,899	\$240,931	as a result of replacing	
	15	\$123,040	\$758	\$123,797	\$331,285	\$32,562	\$363,847	\$240,049	old and unreliable	
	16	\$124,885	\$769	\$125,654	\$331,285	\$33,538	\$364,824	\$239,170	equipment and systems	
	17	\$126,758	\$780	\$127,539	\$331,285	\$34,545	\$365,830	\$238,291	or thermal improvement	
	18	\$128,660	\$792	\$129,452	\$331,285	\$35,581	\$366,866	\$237,414	to the building envelope	
	19	\$130,590	\$804	\$131,394	\$331,285	\$36,648	\$367,934	\$236,540		404,001
	20	\$132,549	\$817	\$133,365	\$331,285	\$37,748	\$369,033	\$235,668	\$0	\$32,964
	Tota	\$2,342,778	\$168,489	\$2,511,267	\$6,625,706	\$578,441	\$7,204,146	\$4,725,843	\$32,964	\$692,235

Energy Public-Private Partnerships (P3)

GESA Related Structures. Optimizing CAP Financials. Long-Term Performance

PA GESA Power Traditional Contracting Design-Build-Own-Traditional Energy/Fleet-P3 Risk & Liability Transfer Energy Performance Contacting **Purchase** Methods as-a-Service **Operate-Maintain Design-Build** (EPC) Agreement Vs GESA & P3 Contracting (E/FaaS) (DBOOM) (PPA) (Typical) 1) GESA Hybrid 2) Self-Funded Institution Secured Debt Debt Service Yes No Financing Capacity Preserved New Infrastructure Combination of Capital Investment / Outlay City Capital & Sustained Efficiency Yes No No Financed Required Savings Financial Obligation Performance Risk "On" or "Off" / Debt Financing / **Balance Sheet Impact Operational Liability Credit Rating Impact** Positive to Neutral Integrated "Turnkey" Services & Costing – Development & No Yes Yes Construction Savings & Performance Performance No Yes Yes Yes Guarantee Guarantees **Asset Monetization Potential** No Yes 20 - 30 +Construction Contract Term (Typical) 15 – 20 Years 20-25 Years 20-30+ Years Years Term Modeled as Due as **Debt Service** Modeled as Modeled as Utility **Payments Over Term** Utility Bill Utility Bill or Service Bill Contracted

Unrestricted © Siemens industry, inc. Smart intrastructure 2021

SIEMENS

Insonuity for life